THE PREPARATION, CHARACTERIZATION IN SOLUTION OF THE 7π RADICAL 1,2,4-TRISELENO-3,5-DIAZOLYLIUM, AND THE 6π 1,2,4-TRISELENO-3,5-DIAZOLIUM (2+) CATIONS, AND THE X-RAY CRYSTAL STRUCTURES OF (SeNSeNSe)₂(AsF₆)₂ AND SeNSeNSe(AsF₆)₂ CONTAINING THE FIRST STABLE BINARY SELENIUM–NITROGEN SPECIES

Edward G. Awere, Jack Passmore and Peter S. White Department of Chemistry, University of New Brunswick, Bag Service # 45222, Fredericton, NB, E3B 6E2 (Canada)

Numerous binary sulphur-nitrogen species have been prepared and structurally characterized. Analogous selenium-nitrogen compounds are restricted to Se_4N_4 which is even more thermodynamically and kinetically unstable than S_4N_4 . As a result for a search for $SeNSe^+$ [cf. SNS^+ , which has a very extensive chemistry [1]] we prepared $(SeNSeNSe)_2(AsF_6)_2$ and $SeNSeNSe(AsF_6)_2$ by a variety of routes, containing the first reported thermally stable binary selenium nitrogen species including the indefinitely stable 7π radical cation $SeNSeNSe^+$. These salts were fully characterized both in the solid state [X-ray], and in solution, [$SeNSeNSe^{+}$, e.s.r.; $SeNSeNSe^{2+}$, Raman, ^{14}N , $^{77}Se~N.M.R.$]. Interestingly $SeNSeNSe^{2+}$ retains its ring structure in solution in contrast to $SNSNS^{2+}$, in solid $S_3N_2(AsF_6)_2$, which dissociates to NS^+ and SNS^+ [2].

 W.V.F. Brooks, N. Burford, J. Passmore, M.J. Schriver, and L.H. Sutcliffe, <u>J.Chem.Soc., Chem. Commun.</u>, 69-71 (1987); E.G. Awere, N. Burford, C. Mailer, J. Passmore, M.J. Schriver, P.S. White, A.J. Banister, H. Oberhammer and L.H. Sutcliffe, <u>J.Chem.Soc., Chem.</u> <u>Commun.</u>, 66-69 (1987) and references therein.

2 J. Passmore, M.J. Schriver, <u>Inorg. Chem. 27</u> 2749-51 (1988).